Paralysis Proofs: Safe Access-Structure Updates for Cryptocurrencies and More
نویسندگان
چکیده
Suppose that N players share cryptocurrency using an M out-of-N multisig scheme. If N−M+1 players disappear, the remaining ones have a problem: They’ve permanently lost their funds. We introduce Paralysis Proofs. A Paralysis Proof is a proof that players cannot act in concert, e.g., some players have become unavailable. Paralysis Proofs can support the construction of a Paralysis Proof System, which helps maintain resource availability by updating (e.g., downgrading) the resource’s access structure when critical players, i.e., key-share holders, become unavailable. We present a very general Paralysis Proof System implementation that combines trusted hardware, specifically Intel SGX, with a censorshipresistant channel in the form of a blockchain. Active players may issue a challenge to inactive or missing ones. A failure to respond in a timely way, as recorded on the blockchain, generates a Paralysis Proof that authorizes the trusted hardware to change the access structure, for instance, to allow cryptocurrency to be spent without the missing players. Paralysis Proofs help address a pervasive key-management problem in cryptocurrencies and many other settings. We present specific instantiations for Ethereum (without trusted hardware) and for Bitcoin (with and without trusted hardware). We show that for any cryptocurrency system, versions with trusted hardware can be far more efficient than those without. We also show how extensions of our techniques can encompass a rich array of access-structure policies addressing problems well beyond paralysis.
منابع مشابه
Improving Authenticated Dynamic Dictionaries, with Applications to Cryptocurrencies
We improve the design and implementation of two-party and three-party authenticated dynamic dictionaries and apply these dictionaries to cryptocurrency ledgers. A public ledger (blockchain) in a cryptocurrency needs to be easily verifiable. However, maintaining a data structure of all account balances, in order to verify whether a transaction is valid, can be quite burdensome: a verifier who do...
متن کاملPossible State Approaches to Cryptocurrencies
Cryptocurrencies are a type of digital currencies that are relying on cryptographic proofs for confirmation of transactions. Cryptocurrencies usually achieve a unique combination of three features: ensuring limited anonymity, independence from central authority and double spending attack protection. No other group of currencies, including fiat currencies, has this combination of features. We wi...
متن کاملA Logic of Blockchain Updates
Blockchains are distributed data structures that are used to achieve consensus in systems for cryptocurrencies (like Bitcoin) or smart contracts (like Ethereum). Although blockchains gained a lot of popularity recently, there is no logic-based model for blockchains available. We introduce BCL, a dynamic logic to reason about blockchain updates, and show that BCL is sound and complete with respe...
متن کاملSnow White: Provably Secure Proofs of Stake
Decentralized cryptocurrencies have pushed deployments of distributed consensus to more stringent environments than ever before. Most existing protocols rely on proofs-of-work which require expensive computational puzzles to enforce, imprecisely speaking, “one vote per unit of computation”. The enormous amount of energy wasted by these protocols has been a topic of central debate, and well-know...
متن کاملScripting smart contracts for distributed ledger technology
We give an overview of the scripting languages used in existing cryptocurrencies, and in particular we review in some detail the scripting languages of Bitcoin, Nxt and Ethereum, in the context of a high-level overview of Distributed Ledger Technology and cryptocurrencies. We survey different approaches, and give an overview of critiques of existing languages. We also cover technologies that mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2018 شماره
صفحات -
تاریخ انتشار 2018